9 Ada Implementation

9.1 Introduction

Welcome to the Ada implementations of the Algorithms® Wikibook. For those who are new
to Ada Programming? a few notes:

e All examples are fully functional with all the needed input and output operations.
However, only the code needed to outline the algorithms at hand is copied into the text -
the full samples are available via the download links. (Note: It can take up to 48 hours
until the cvs is updated).

e We seldom use predefined types in the sample code but define special types suitable for
the algorithms at hand.

e Ada allows for default function parameters; however, we always fill in and name all
parameters, so the reader can see which options are available.

o We seldom use shortcuts - like using the attributes Image or Value for String <=> Integer
conversions.

All these rules make the code more elaborate than perhaps needed. However, we also hope
it makes the code easier to understand

Category:Ada Programming?

9.2 Chapter 1: Introduction

The following subprograms are implementations of the Inventing an Algorithm examples?.

9.2.1 To Lower

The Ada example code does not append to the array as the algorithms. Instead we create
an empty array of the desired length and then replace the characters inside.

File: to_lower_1.adb

function To_Lower (C : Character) return Character renames

http://en.wikibooks.org/wiki/Algorithms
http://en.wikibooks.org/wiki/Ada’,20Programming
http://en.wikibooks.org/wiki/Category’3AAdal,20Programming
Chapter 1.3 on page 4

=W N =

69


http://en.wikibooks.org/wiki/Algorithms
http://en.wikibooks.org/wiki/Ada%20Programming
http://en.wikibooks.org/wiki/Category%3AAda%20Programming

Ada Implementation

Ada.Characters.Handling.To_Lower;

-- tolower - translates all alphabetic, uppercase characters
-- in str to lowercase
function To_Lower (Str : String) return String is

Result : String (Str'Range);
begin

for C in Str'Range loop

Result (C) := To_Lower (Str (C));

end loop;

return Result;
end To_Lower;

Would the append approach be impossible with Ada? No, but it would be significantly more
complex and slower.

9.2.2 Equal Ignore Case

File: to_lower 2.adb

-- equal-ignore-case -- returns true if s or t are equal,
-- ignoring case
function Equal_Ignore_Case

(s : String;
T : String)
return Boolean
is
0 : constant Integer := S'First - T'First
begin
if T'Length /= S'Length then
return False; -- if they aren't the same length, they
-- aren't equal
else

for I in S'Range loop
if To_Lower (S (I)) /=
To_Lower (T (I + 0))
then
return False;
end if;
end loop;
end if;
return True;
end Equal_Ignore_Case;

9.3 Chapter 6: Dynamic Programming

9.3.1 Fibonacci numbers

The following codes are implementations of the Fibonacci-Numbers examples®.

5 Chapter 6.1 on page 49

70




Chapter 6: Dynamic Programming

Simple Implementation

File: fibonacci_ 1.adb

To calculate Fibonacci numbers negative values are not needed so we define an integer type
which starts at 0. With the integer type defined you can calculate up until Fib (87). Fib
(88) will result in an Constraint_Error.

type Integer_Type is range O .. 999_999_999_999_999_999;

You might notice that there is not equivalence for the assert (n >= 0) from the original
example. Ada will test the correctness of the parameter before the function is called.

function Fib (n : Integer_Type) return Integer_Type is
begin
if n = 0 then
return O;
elsif n = 1 then
return 1;
else
return Fib (n - 1) + Fib (n - 2);
end if;
end Fib;

Cached Implementation

File: fibonacci_ 2.adb

For this implementation we need a special cache type can also store a -1 as "not calculated"
marker

type Cache_Type is range -1 .. 999_999_999_999_999_999;

The actual type for calculating the fibonacci numbers continues to start at 0. As it is a
subtype of the cache type Ada will automatically convert between the two. (the conversion
is - of course - checked for validity)

subtype Integer_Type is Cache_Type range
0 .. Cache_Type'Last;

71



Ada Implementation

In order to know how large the cache need to be we first read the actual value from the
command line.

Value : constant Integer_Type :=
Integer_Type'Value (Ada.Command_Line.Argument (1));

The Cache array starts with element 2 since Fib (0) and Fib (1) are constants and ends
with the value we want to calculate.

type Cache_Array is
array (Integer_Type range 2 .. Value) of Cache_Type;

The Cache is initialized to the first valid value of the cache type — this is -1.

F : Cache_Array := (others => Cache_Type'First);

What follows is the actual algorithm.

function Fib (N : Integer_Type) return Integer_Type is
begin
if N = 0 or else N = 1 then
return N;
elsif F (N) /= Cache_Type'First then
return F (N);

else
F (N) := Fib (N - 1) + Fib (N - 2);
return F (N);
end if;
end Fib;

This implementation is faithful to the original from the Algorithms® book. However, in Ada
you would normally do it a little different:

File: fibonacci 3.adb

when you use a slightly larger array which also stores the elements 0 and 1 and initializes
them to the correct values

type Cache_Array is
array (Integer_Type range O .. Value) of Cache_Type;

F : Cache_Array :=
(0 => 0,
1 =1,
others => Cache_Type'First);

6 http://en.wikibooks.org/wiki/Algorithms

72


http://en.wikibooks.org/wiki/Algorithms

Chapter 6: Dynamic Programming

and then you can remove the first if path.

return N;
els

73




Ada Implementation

if F (N) /= Cache_Type'First then

74



Chapter 6: Dynamic Programming

This will save about 45% of the execution-time (measured on Linux i686) while needing only
two more elements in the cache array.

Memory Optimized Implementation

This version looks just like the original in WikiCode.

File: fibonacci 4.adb

type Integer_Type is range O .. 999_999_999_999_999_999;

function Fib (N : Integer_Type) return Integer_Type is
U : Integer_Type := O;
V : Integer_Type := 1;
begin
for I in 2 .. N loop
Calculate_Next : declare
T : constant Integer_Type := U + V;

begin
U :=V;
V :=T;
end Calculate_Next;
end loop;
return V;
end Fib;

No 64 bit integers

Your Ada compiler does not support 64 bit integer numbers? Then you could try to use
decimal numbers” instead. Using decimal numbers results in a slower program (takes about
three times as long) but the result will be the same.

The following example shows you how to define a suitable decimal type. Do experiment
with the digits and range parameters until you get the optimum out of your Ada compiler.

File: fibonacci_b5.adb

type Integer_Type is delta 1.0 digits 18 range
0.0 .. 999_999_999_999_999_999.0;

You should know that floating point numbers are unsuitable for the calculation of fibonacci
numbers. They will not report an error condition when the number calculated becomes too
large — instead they will lose in precision which makes the result meaningless.

7 http://en.wikibooks.org/wiki/Ada),20Programming%2FTypes%2Fdelta

75


http://en.wikibooks.org/wiki/Ada%20Programming%2FTypes%2Fdelta

